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ABSTRACT: The inversion of electroheat problems is important in electrical machine design, metallurgical 

processes of mixing, and hyperthermia treatment in oncology. One of the important computations involves 

synthesizing the electromagnetic arrangement of coils so as to accomplish a desired heat distribution to achieve 

mixing, reduce machine heat or burn cancerous tissue. Two finite element problems need to be solved, first for the 

magnetic fields and the joule heat that the associated eddy currents generate and then, based on these heat sources, 

the second finite element problem for heat distribution. This two part problem needs to be iterated on to obtain the 

desired thermal distribution by optimization. This represents a heavy computational load associated with long wait-

times before results are ready. The graphics processing unit (GPU) has recently been demonstrated to enhance the 

efficiency of the finite element field computations and cut down solution times. In this paper, given the heavy 

computational load from the two-part problem and the optimization, we use the GPU to perform the electroheat 

optimization by the genetic algorithm to achieve computational efficiencies better than those reported for a single 

finite element problem.  The feasibility of the method is established through the simple problem of shaping a current 

carrying conductor so as to yield a constant temperature along a line.  

 

Keywords: GPU, Multi-physics, FEM Optimization. 

 

Optimization of Electro-Heat Systems for Desired Temperature   

Heavy currents always lead to heating through the joule effect. This heat is often undesirable as in electrical 

machinery like alternators where the heat not only diminishes the efficiency of the generator but also can damage 

the insulation [1]. In other cases this heat can be beneficial as in a) the metallurgical industry where the heat is used 

to melt the ore and mix it through electromechanical forces [2-4] or b) hyperthermia treatment in oncology where 

cancerous tissue is burnt off although with lower currents, achieving the heating by stronger eddy currents through 
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higher 1 kHz frequency [5, 6]. Whatever the situation it is often desirable to accomplish a particular thermal 

distribution – whether to save an alternator from overheating or to accomplish the necessary melting of the ore or to 

burn cancerous tissue without hurting healthy tissue. 

 

As shown in Fig. 1, the design process involves setting the parameters{p} that describe the electro-heat system 

(consisting of dimensions and material values), solving the eddy current problem for the magnetic vector potential  

A: 

  
 

 
     =                (1) 

where   is the magnetic permeability,    is the electrical conductivity, E the electrical field strength and     is the 

externally imposed electric field driving the current [1,7]. Being a heavy current problem the frequency   is low so 

that the current density J has only a conduction term      and no displacement term       After finding A [8], we 

compute the joule heating density q from 

           (2) 

and 

   
  

 
   (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once we have the heat source distribution q, the second problem of finding the resulting temperature is addressed by 

solving 

     
     (4) 

  

Figure 1: Finite Element Analysis and Optimization of Coupled Magneto-Thermal Problems 
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where    is the thermal conductivity [8]. Since the problem began with defining the parameters of system 

description {p}, we note that T = T({p}) since the computed T will depend on the values of {p}. 

 

When a particular temperature distribution         is desired, the problem is one of finding that {p} which will 

yield 

 T({p}) =    (5). 

This is recognized as inverting (5) to find {p} and therefore referred to as the inverse problem which is now well 

understood in the literature, particularly when we are dealing with one branch of physics like electromagnetics [9-

14].  

 

In multi-branch coupled physics problems like the electroheat problem under discussion, {p} is defined in the 

electromagnetic system and F in the thermal system [8]. Further, when dealing with numerical methods such as the 

finite element method, T is given at the nodes (although technically T(x,y) may be derived from the finite element 

trial functions using the nodal values) and   , rather than being a function of x and y, is more conveniently defined 

at measuring points i,  numbering say m.  The design desideratum then may be cast as an object function F to be 

minimized with respect to the parameters {p} 

           
 

 
       

  
  

    (6) 

 

 

 
Figure 2: The Design Cycle for the Coupled Electroheat Problem 
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where    is T as computed at the same m points i where    is defined. The optimization process, by whatever 

method [15], keeps adjusting {p} until F is minimized, making    come as close to   
  as it can – as close as it can 

rather than exactly to   
  because our design goal as expressed in (6) may not always be realistic and achievable. At 

that point {p} would represent our best design. This specific process as it relates to Fig. 1, is shown in Fig. 2. 

 

Optimization of Two-Physics Problems against Single Physics Problems 
In the optimization of a single physics problem as in magnetostatics [9, 11-14], we construct one finite element 

mesh, solve for the magnetic vector potential A, and then change {p}. The method by which we change {p} depends 

on the method of optimization we employ [15]. In coupled problems like the electroheat problem under discussion, 

two different meshes are often required [8]. For example, at a copper-air boundary in magnetics, both regions are 

nonmagnetic and therefore have the same permeability, the permeability of free space   . However, for the thermal 

problem, they need to be modeled as two different regions because air has little thermal conductivity whereas copper 

is highly conductive. 

 

Moreover, the optimization process too imposes huge difficulties depending on the method employed. In the simpler 

zeroth order methods, only the value of F, given {p,} needs to be computed. This takes simply a finite element 

solution for a mesh constructed for the present value of {p}. In the more powerful first order methods, however, 

    
  

    
  

  

   
  (7) 

needs to be computed [15]. This may be by finite differences – that is, to get the derivative of F with respect to   , 

we need to evaluate F(  ), then adjust   by a very small amount    , redo the finite element solution (which means a 

new mesh has to be generated for the changed geometry), and then evaluate F, which would be          . This 

gives us   , thereby leading to the derivate by finite difference,       . This is computationally expensive because 

of having to be done for all m parameters   , which means the first finite element solution at {p} and evaluation of 

F({p}) followed by m finite element solutions with only a particular    adjusted by     and then the evaluation of m 

values of   . That is, m+1 finite element meshes and solutions are required at great cost. Furthermore, even after all 

that work, it is known that the derivative by this finite difference process has poor accuracy [16]. The correct way to 

obtain accurate derivatives is from the derivative information inherent to the finite element solution through the 

finite element trial function; that is, although the solution for A is explicitly in terms of the values of A at the finite 

element nodes, we are really solving for A(x,y) as given by the trial function which is expressed through the nodal 

values of A [7]. In solving the finite element Dirichlet matrix equation 

            (8) 

Although we explicitly solve for the nodal values {A}, it is really for the trial function A(x,y) that we are solving. 

Both the Dirichlet matrix [P] and right hand side {Q}in (8)  are expressed as known functions of the vertex 

coordinates of the finite elements of the mesh, permeability, and current density. After solving for {A}, 

differentiating the equation with respect to    we obtain [7, 8, 12-14] 

    
    

   
 

    

   
 

    

   
    (9) 
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where {A} has already been solved for, and          and          are computable. There is further computational 

efficiency to be reaped [17] by using the Cholesky factorization method of splitting [P] into its lower triangular and 

upper triangular Cholesky factors  [L] and [U] 

            (10) 

which for symmetric [P] as in both magnetic and thermal  field problems reduces to  

             (11) 

so that solving (8), in its new form 

               (12)  

reduces to solving 

            (13) 

For {z} where  

            (14) 

and then, having found {z}, solving (14) for {A}. The computational efficiency lies in the fact that the main work in 

Cholesky’s scheme for matrix equation solution is in finding [L] by solving (11). Thereafter the forward elimination 

in solving (13) and back substitution in solving (14) are trivial. That is, once [L] and [U] =      are in hand, solving 

(9) with the same coefficient matrix [P] as (8) for the m gradients 
    

   
 is trivial since only forward elimination and 

back substitution are required. 

 

Be that as it may, while solving (9) is trivial, forming (9) is not because computing          and          to form 

(9) is in terms of programming an arduous task that is not easily amenable to building up as general purpose 

software. As a particular   changes, some vertices of a few triangles will move [9, 14] and the analyst needs to keep 

track of whether one, two or all three of the vertices of a triangle move by    . Very complex coding is required that 

is problem-specific rather than general purpose. In a coupled problem, computing the derivatives of the finite 

element equations for temperature with respect to parameters in the magnetic problem is prohibitively complex 

although there are ways around it [18, 19]. Programming the problem specific computations of          and 

         is ill-advised because of the complexities.  

 

Therefore first order optimization methods, more slowly convergent than gradient methods, are the best route to go 

for optimizing coupled electroheat problems.  Simkin and Trowbridge [20] aver that simulated annealing and the 

evolution strategy (a variant of the genetic algorithm [21] ) take many more function evolutions. Although they are 

computationally intensive they are far easier to implement, especially as general purpose software. Indeed 

commercial codes that need to be general purpose use zeroth order methods not necessarily because they are 

superior to gradient methods, but because once a finite element analysis program is developed by a company, giving 

it optimization capabilities only takes coupling it with an optimization package to which object function evaluations 

can be fed – whereas feeding both the object function and its gradient as would be required when gradient methods 

are in use would take extensive code development. In the context of single physics problems, Haupt [22] advises 

that the genetic algorithm is best for many discrete parameters and the gradient methods for where there are but a 
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few continuous parameters.  We rationalize this position on the grounds that gradient computation though difficult is 

more manageable when there are fewer parameters to optimize with respect to. Indeed, we have gone up to 30 

continuous parameters using gradient methods without problems. 

 

But we are now dealing with multi-physics electroheat problems to which these considerations based on single 

physics systems do not apply. 

 

Method of Optimization – The Genetic Algorithm 

Having settled on a zeroth order method of optimization that does not need gradient information on the object 

function, we take cognizance that zeroth order methods are statistical so that several-fold more object function 

computations need to be made. Random Search is too random in its searching and we need something more 

systematic in its searching the domain space so as to not lead to excessive computation times in relation to gradient 

methods.  

 

The alternatives are simulated annealing and the genetic algorithm, both good methods widely used in industry and a 

part of commercial software [23]. Going by the literature Preis, Magele and Biro [24], staunch advocates of the 

zeroth order evolution strategy, merely say it is competitive with its higher order deterministic counterparts (which 

we take to mean the same in time at best), but claim its “robustness and generality” are superior. This we agree with 

because search methods will never see mesh-induced artificial local minima as a problem [25]. The weight of 

evidence seemed to favor the genetic algorithm over simulated annealing but not firmly so.  So we did a quick study, 

the results of which, shown in Fig. 3, support the genetic algorithm. Therefore we chose the genetic algorithm, the 

features of which are shown in Fig. 4. We note that in results from other disciplines besides finite element 

optimization Manikas and Cain also say that “the genetic algorithm was shown to produce solutions equal to or 

better than simulated annealing” in their work [26]. 

 

 
Figure 3: Genetic Algorithm Speed Compared with Simulated Annealing 
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In the genetic algorithm, the design parameter vector     is represented by a binary encoding method. A 

chromosome is a vector {p}. Its fitness score f is defined in terms of the object function F. Although our object 

function F as defined in (6) is to be minimized, the fitness score f has to be maximized for the genetic algorithm. We 

therefore define the fitness score  

  (15) 

 
Figure 4: Optimization Using the Genetic Algorithm 

 

 

 

 

Figure 5.Changing design parameters in GA 
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Therefore when F goes to 0, f will reach it maximum value of 1. According to the methodology of optimization 

using GA as shown in Figs. 4 and 5, first we randomly generate hundreds of vectors      (each called a 

chromosome) and this set is termed the initial population. With parallels to evolution, a new generation is to be 

created based on the best of this population. Then the fitness score for each {p} is calculated and checked as to 

whether there is a score at 1 or close enough for our purposes. This computation involves computing F according to 

(6) and therefore a finite element solution for that {p}. If there is no f satisfactorily close to 1, then the design 

parameters are changed according to the GA’s classical way of selection, namely selection, crossover, and mutation 

(Fig. 4). In the selection process we use [23], selection of the new generation is based on elitism, which first copies 

the best half of the chromosomes to the new population without any changes (Fig. 5). Elitism can very rapidly 

increase the performance of GA because it prevents losing the best found solutions (meaning those sets {p} giving 

the best, i.e., highest, f values).  The remaining half of the population will be replaced by offspring of the best half 

after crossover, and mutation as shown in Fig. 5. Here the crossover shown is one point crossover, whereby we 

randomly select one crossover point and then copy everything before this point from the first parent and then 

everything after the crossover point from the second parent. After a crossover is performed, mutation takes place. 

Mutation is an important part of the genetic search: it helps to prevent the population from stagnating at local 

optima. The mutation operator simply inverts the value of a randomly chosen gene of a chromosome. Now the 

current population will be replaced by the new population. This process will be repeated until the stopping 

conditions of Fig. 4 are satisfied.  

 

GPU Computation for Genetic Algorithms for Electroheat Problems 

We have at this point decided on optimization by the genetic algorithm in favor of other zeroth order methods and 

gradient methods. Naturally the work in two-physics electroheat problems in finite element GA optimization is far 

beyond that for a single finite element solution. First we have a 2-part coupled problem, having to solve for the 

magnetic field and then the thermal problem where we solve for the temperature. For realistic problems this has to 

be done several times – indeed tens of thousands of times – in searching the solution space for the minimum object 

function. Wait times can be excessive, making optimization practicably infeasible. 

 

To cut down solution time, parallel processing needs to be resorted to [17, 27-32]. From the 1990s multiprocessor 

computers have been tried out. Typically with n processors (or computing elements), solution time could be cut 

down by almost a factor of (n-1) – (n-1) rather than n because one processor is reserved for controlling the other (n-

1) and almost a factor of (n-1) rather than exactly (n-1) because of the additional operations of waiting while one 

processor accesses data being changed by another [27-32]. This route, however, is not desirable because 

supercomputers are prohibitively expensive and there are technical difficulties in sharing memory, because of which 

the available n values are usually 4, 8 and 16 and beyond that the costs become very high for normal engineering 

establishments and universities for broad acceptance. 
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Recently the graphics processing unit, endowed with much computing prowess to handle graphics operations, has 

been exploited to launch a computational kernel as several parallel threads [33]. This is ideally suited for object 

function evaluation as the kernel so that multiple threads can perform the finite element analyses and evaluation  of f 

for each {p} in parallel. NVIDIA Corp’s GPUs invented in 1999 and the Compute Unified Device Architecture 

(CUDA) [34] are today available on practically every PC as a standard and are increasingly exploited with more and 

more applications being ported thereto. Significantly the number of parallel threads is not limited as on a shared 

memory supercomputer. 

 

  

Cecka, Lew, and Darve [33] have also created and analyzed multiple approaches in assembling and solving sparse 

linear systems on unstructured meshes. The GPU coprocessor using single-precision arithmetic achieves speedups of 

30 or so in comparison with a well optimized double-precision single core implementation [25]. We see that this is 

far better than the factor of just below 7 possible on a very expensive 8 processor supercomputer. So this is the way 

we will go, using the GPU to process the GA algorithm in parallel.  

 

At present the limitations on GPU parallel processing are the 4 GB memory and the inability to launch a kernel in a 

parallel forks when that kernel is already a part of a parallelized fork – that is if we launch kernels as parallel thread 

with each thread doing a genetic algorithm evaluation, then within that kernel we cannot launch kernels for matrix 

solution in the manner of Cecka, Lew, and Darve [33]. But that is no real disadvantage because in the alternative of 

 
Figure 6: The Parallelized Process of the GPU 
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b) Symmetric Quarter: Boundary Value Problem 

 

Figure 7: Numerical Model for Coupled Electroheat Problem 

 

 
a) Electrically Heated Conductor: The Actual Geometry 

 

using shared memory supercomputer, for all practical purposes the hardware costs are prohibitive. Keeping in mind 

that forking of an already forked process is not possible on a GPU, we fork the fitness value computations as in Fig. 
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Figure 8: The Parameterized Geometry 

 

6. Fitness value calculation is the time consuming part as it involves both mesh generation, and finite element 

calculation. This forms a kernel that will be launched in parallel threads. 

 

Therefore we divide the GPU threads and blocks of the same number as the population size and compute f values 

simultaneously (Fig.6). Since we have 65,536 blocks (     and 512 threads in a general GPU, we can go up to a 

population size of                        using the one GPU card on a PC. Since we do not need such a 

large population size for effective optimization, this is not restrictive. All the finite element calculation parts are 

programmed on the GPU in the CUDA C language. So when, given each {p}, we launch the fitness computation 

kernel as several threads (one for each {p}), the fitness score for all chromosomes will be calculated at the same 

time in parallel. But for each chromosome, the finite element calculation will be done sequentially (Fig. 6) and not 

parallelized along the lines of Cecka, Lew, and Darve. [33] because that would be attempting to fork within a fork.  

 

Test Problem: Shaping an Electroheated Conductor to Achieve Temperature Profile 

The test problem chosen is a simple one on which the method can be demonstrated and its feasibility established. 

Shown in Fig. 7a is a rectangular conductor which is heated by a current through it. The equi-temperature profiles 

would be circle-like around the conductor. But we want a constant temperature along two lines parallel to the pre-

shaping rectangular conductor’s two opposite edges to be shaped (Fig. 7). The question is this: how should that edge 

be reshaped to accomplish a constant temperature along the lines on either side of the conductor? This is the same 

problem that has been solved by the gradient method which, as noted [8], needs an alternative computational process 

because of the difficulties in constructing general purpose software yielding gradient information for the coupled 

problem. 

 

Fig. 7b presents the associated boundary value problem formed from a quarter of the minimal system for analysis 

consisting of a square conductor (with             S/m,        W/m/   
  . A current density            

     has a relatively low frequency of          kept deliberately low to avoid a very fine mesh,  our purpose 

here being to investigate and establish methodology rather than to solve large problems in their full complexity. The 
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top edge of the conductor has to be shaped to get a constant temperature profile of 60 
o 
C, at              

            as shown in Fig.7 along the measuring line where, along the lines of (6), we define the object 

function 

    
 

 
           

    (16) 

where    is the temperature computed at the measuring point i. An erratic undulating shape arose when Pironneau 

optimized a pole face to achieve a constant magnetic flux density [35]  and this was overcome through constraints 

[36]. Accordingly we extend the same principle, so as to maintain a non-undulating shape by imposing the 

constraints 

 h1>h2 > h3 >h4 >h5 >h6 >h7  (17) 

to ensure a smooth shape. The penalties were imposed  by adding a penalty term to the object function F whenever it 

fails to satisfy the conditions for constraints [15, 23] 

 

Radiation effects at the boundary are neglected, taking the boundary temperature to be the room temperature at 20 

  
 . As already stated, we avoid more exact details because our purpose here is to establish the feasibility of the 

methods we use, assessing the efficiencies to be gained by the use of GPU processing. 

 

The parameterized problem specific mesh is shown in Fig. 8 where the device descriptive parameter set {p} consists 

of the 7 heights   . The numerical model was uniformly meshed with 234 nodes and 408 elements. This was 

deliberately kept crude to control debugging; after succeeding with the method and establishing that it works as a 

method and as programmed on the GPU, it was refined as necessary for higher accuracy.  

 

 

Figure 9: Optimal Shape by the Genetic Algorithm 
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 In the process of optimization as these heights    change the mesh connections remain the same but the element 

sizes and shapes change. For the specific example shown in Fig. 8, the heights    are divided into six pieces so the 

locations of the seven equally spaced seven nodes along the height    would change. Accordingly the length from 

above the edge of the conductor being shaped to the vertical boundary will be adjusted and divided into 11 equal 

lengths. 

The measuring line located at y = 6 cm, was sampled into 10 equally spaced points and tolerance boundaries of each 

  were set to 

                  (18) 

 

Results and Discussion thereof 

Fig. 9 shows the optimum shape of the conductor and temperature profile after 40 iterations for a population size of 

512.  The corner of the conductor rising toward the line where the constant 60   
  temperature is desired is as to be 

expected. For as seen in Fig. 10 (which shows the design goals being accomplished), the constant 60   
  temperature 

is perfectly matched.  The lower graph giving the initial temperature shows that the temperature drops above the 

corner of the conductor. Therefore to address this, the corner has to rise close to the line of measurement to heat the 

line above the corner and Fig. 9 shows that this is what the optimization process has accomplished. 

 

Significant speedup was accomplished with GPU computation as seen in Fig. 11. No gains in speedup beyond a 

factor of 28 were seen after a population size of 200. The meandering nature of the gain after that may be attributed 

to the happenstance inherent to a statistical method like the genetic algorithm.  

 

The gain of 28 or so, however is lower than the “30 or more” reported by Cecka, Lew, and Darve [33] for their 

paper about the direct finite element solution paper but it is an impressive figure given the extensive communication 

time in a coupled problem such as this. To verify that the performance of our programming is superior  we 

programmed the conjugate gradients solution for ever larger matrix sizes and measured the GPU:CPU ratio. Our 

 
Figure 10: Temperature Distribution: Desired, Initial and Optimized 
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findings are seen in Fig. 12 where we achieve a far superior gain of 147. This may be because Cecka et al. could 

achieve only a 2-3 fold gain in matrix assembly. Even accounting for that, however, their gain is very small 

considering that matrix assembly takes but trivial, negligible time in the finite element solution process where the 

preponderant computational load is from matrix solution. Our lower gains during optimization which includes 

matrix assembly is comparable to the accomplishments of Cecka et al. and needs further study as why such wide 

ranging gains occur. 

 

 

 

CONCLUSIONS  

Shape optimization for the electroheat  problem using GA has presented and validated using a simple geometry. 

This problem was also computed using GPU parallel computing techniques whereby speedups of 28 were 

demonstrated. This is comparable to the speedup of 30 recently demonstrated in the literature for a single finite 

 
Figure 12: Speedup of the Conjugate Gradients Algorithm: Matrix Size Vs CPU time/GPU time 

 
Figure 11: Speedup: GA Optimization GPU Time: CPU Time with 



UNCLASSIFIED: Distribution Statement A. Approved for public release. 

15 
 

element solution. Yet we have demonstrated a speedup of 148 for a single finite element matrix equation solution.  

A companion paper will show how such an immense speedup was achieved [37].  

 

The next step to be taken is including thermal phenomena like radiation and convection and incorporating 

nonlinearity which could have implications to convergence. This model also has to be extended to 3-D. 
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